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Summary: The purpose of the paper is to present a I)rief review of I)asic theoretical approac•hes to two-
dimlensionlal (2D) nonlinear supercavitatinlg flows ini the framnework of theory of jets ini anl ideal fluid. Ini this
connllection discussed are Kirchhoff and Zhukovsky mnethods, Chaplygin mnethod of "singular points", nlethod
of integral equation, etc. A simlple model problem of a supercavitating (SC) flat plate at zero cavitation
number T 0 is chosen to illustrate the core of the methods and their corlparative effectiveness. Some
mathematical aspects of open and closed cavity closure schemes are studied as well with use of Chaplygin
method applied to a SC plate with a spoiler at nonzero cavitation nuimbl)er. An influence is demonstrated of free
and solid b)oundaries onto the cavity volume and hydrodynamic characteristics of the plate. Mathematica 4.0
software is used as a main tool for the flow pattern visualization of the proi)lems under consideration. An
analytical exact solution is presented to the 2D nonlinear flow problem of an arbitrary supercavitating foil and
numerical results are discussed.

1. Basic assumptions of theory of jets in an ideal fluid

Theory of jets in an ideal fluid is appeared to I)e one of the I)est-studied fields of theoretical hydrodynamics
dealing with flows confined by free and solid I)oundaries, the pressure constancy condition i)eing satisfied on
the formler. H. Helhholtz [8] anid G. Kirchhoff [12] were the first to formlulate and solve somne relatively simlple
prol)lems of the theory of jets. Nowadays one can find i)rilliant surveys of the advances and development in the
theory in I)ooks I)y Birkhoff & Zarantanello [1], Gilbarg [5] and Gurevich [7] (see also English translation of the
b)ook [6]). The works by Tulin [23], Terentev [21] and Maklakov [16] should also I)e distinguished.
As it follows from the name of the theory itself, we suppose a fluid to I)e an ideal one. For simIiplicity we neglect
the gravity influence and specify that the flow be 2D, steady and inrcompressible. The flow has a velocity
potential o if

v grad s.

where v vT,, + ivy is the total velocity vector in the flow. The harmonic function ((x, y) is the real part of an
analytical function of complex potential (or characteristic function) w(z) = + i- P, where z x + iy and (x, y)
denote axes of rectangular Cartesian coordinate system. The imaginary part of w is called stream function Vy,
the velocity vector i)eing given i)y

vx OX Oy ; v Oy Ox
uniction V) has a constant value on each separate streamline including free surfaces while ( increases along a

streamline in downstream direction. A so called conjugate velocity can I)e introduced as follows

__ vX + iv ve- (1)
dz

which is a mirror image of velocity vector v with respect to y-axis. In formula (1) v denotes ai)solute value of
the vector v and 0 is anl angle mlade by the vector to x-axis.
As a result, a problen ini question is conlsidered to I)e solved when the conlplex potential function w(z) w(x+iy)
is found. As is customary, on all the solid I)oundaries of a given topograpJhy the kinematic (flow tangency)
condition is applied, which requires the fluid flow to I)e tangent to the surface of the I)oundary, that is derivative
of ( with respect to normal vector n I)e equal to zero. On the other hand the free streamline condition of
constant speed is satisfied on all the free surfaces. The main difficulty of such free surface flow proi)lems is
connected to nonlinearity of the I)oundary conditions which are, moreover, to I)e satisfied on the surfaces of
unknown geometry.

Paper presented at the R TO A VT Lecture Series on "'Supercavitating Flows", held at the von Knrmfin
Institute (VKI) in Brussels, Belgium, 12-16 February 2001, and published in RTO EN-010.
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2. Model problem - cavitating plate at zero cavitation number

Consider a 2D cavitating flat plate in a uniformn flow with velocity absolute value at infinity v. and angle of
attack cv, see figure 1. The origin of the Cartesian coordinate system is taken at the plate's trailing edge, x-axis
being directed downstream and y upwards. There is an incident stream with speed v. coining from the left.
The region occupied by the fluid is hounded by the plate [AB] and by two semi-infinite free surfaces (AC) and
(BC).

C

B

0 x

C

Figure 1: Flow pattern for the cavitating flat plate at zero cavitation numblier.

Assume the velocity on the streamlines v0 to be equal to v. and therefore the cavitation nutober

P. - Po0 ,

Pv./2

where p. and P0 denote the pressure at infinity and within the cavity correspondingly. It readily follows from
the Bernoulli equation for an upstream reference point and free surface-boundary point

12 12
PO + 2PVO p= + 2PV.

We render all the paramfeters of the problemn nondimensional by a suitable choice of scale so that v. = I and
plate length equals to unit 1 = 1.

2.1. Kirchhoff method

To solve the problem under consideration, it is convenient to determine the function

dz
<(w) - (ITw (2)

rather than the comiplex potential w(z) = ( + i-P itself. Indeed, if function ((w) is found then z(w) is easily
defined as

__ = ( W = - dw. (3)

Note that it's often no sense in reversing function z(w) to find w(z), all the more so that the operation is rather
cuufli)ersolle.
So the crux of the probleml is to determine w and ( as functions of the same single variable so that equation (3)
can he integrated. Since finction ((w) defines a conformal mapping of w-plane onto the (-plane, one has to
determine these regions and map one to another.
If one choses the stream function Vy to have the value zero on the dividing streamline (COAC) and (COBC) and
since all the streamlines are by definition lines of constant Vy and therefore becomne lines parallel to the p-axis,
then the w-plane has the form shown in figure 2. The plate-cavity comibination appears as a semi-infinite slit
in this plane. The velocity potential ( at the edges of the plate (points A and B) has the values PA and PB.
It is easy to see that

Ve
V



10-3

0 B C
0 A C (P

Figure 2: The complex velocity potential w.

On [OA] one has 0 = -A and v./v ratio varies from infinity at point ) to unit value at point A. On the
(-plane interval [OA] corresponds to a semi-infinite line inclined at angle -(v to the positive direction of x-axis
and starting from the point (A = e-'". A symmetrical line inclined at angle 7f - ca and starting from the point
(B = -e-i" corresponds to another part of the plate [BO]. Angle 0 varies from -a to zero and ratio v./v = I
on streamline (AC). Further on, on streamline (CA) angle 0 increases from zero to 7f - a and v./v remains
the same. Thus free surface on the z-plane becomes a half-circle of unit radius on the (-plane. The (-plane is
depicted in figure 3. A stagnation point C on the z-plane corresponds to -

(A e- i ic A

Figure 3: The ( plane.

To obtain a solution to the problem under consideration it is sufficient to transform w-plane onto (-plane, both
being given in figures 2 and 3. Such a problem is fairly simple and much easier than that of determining harmonic
function ( in the region z with unknown free boundaries. The substitution of the complicated boundary value
problem by a simple problem of conformal mapping is the core of the Kirchhoff method.
The appropriate w - ( mlapping can he found step by step.
First, one transforms (-plane to the first quadrant of the auxiliary w-plane, see figure 4, by conformal mapping

T-- a -a +

i C

A 0 B

0 a

Figure 4: The T plane.

With the correspondence between • and T planes we have for point C

I - e-i"• CV
i --a- . therefore a =cot-

S + e-i" u 2

Second, a new variable T, = T2 varies in the upper semi-plane, see figure 5.
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B C A 0 B
- 1 0 a '2

Figure 5: The Ti plane.

c A 10 B c

Vf;(A 0 1

V PB

Figure 6: The t plane.

On the other hand, transformation t w/ýB transforms w-plane onto the upper semi-plane, see figure 6.
Finally, all we need do is to transform t-plane onto Ti-plane by using formula

a2 +t
Ti I -t;

which results in

a ¢ý:B 1w+Cýp:A7 w (4)
aV 7ýpBF lw± - pA± vlw

where radical x/w is positive on the interval [OB] and negative on [OA], (A -(B e-i and a cot (a/2).
Referring to figures 5 and 6, it is obvious that

FIPAQ 02 -cot2-

2PB 2

while parameter (A remains still unknown.
To determine the unknown parameter we have a condition connected with plate length, see figure 1:

ZB =lei

That is why from equation (3) we find

1P 13" VA 7/ýaP• -B V + V 7 ýP A + V W

ZB (W f (A dw.
Vý OA ý ýA a V PB v7 -~ T pA± v/w

It is a complicated integration but it is seen that

ýO B

__ f(/ (T) (T (T)d(T.
V (] j (]WI (It, /( ]T/I• ] (TI (IT

(/OA 0

where
*a + T dw T2 -- a2 (It ( +I 1 a 2  (IT1

((_) =_( (T) 2ýB (T)~ -(T) 2T
a-T (It ( 2 +I (IT, (T

2 + 1)
2  

(IT

and the following relation holds:

lei(-") -4(AB(1+a2) T(T+a )2(IT.Voo (7-2 + 1)3 "
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As a result one obtains
2 sin

4 4
ýOB Iý CVo 2 (5).

2 + 72 sin - cos (

The total force F acting on the cavitating flat plate is calculated by integration of pressure distribution coefficient
op

F iffu• ZB

2 f1  C dZ (6)

ZA

where
p - P
pv2/2

is given by Bernoulli equation

P2 2 2 (1

Taking into account that (dw vd(Iz on the plate, we find

T, #ip dw

ýOA

Using tihe salne technique as above, we arrive at tihe following extpression for tihe force coeffricient

CF ~ = D+iC _=i(,r/2_-,) 27esinc (7)

PV D1/2 4 + 'w sin "(

It is obvious from what was dealt with above that Kirchhoff method is quite complicated even for such a simple
problem of a cavitating flat plate at zero cavitation numlber. Nevertheless it was the first to enable one to solve
free surface flow problemis. A new imiportant step in this direction was made by N. Zhukovsky in 1890 [26]. He
proposed a new approach to solution of theory of jets in an ideal fluid problemn, which was significantly imiproved
as compared to Kirchhoff one.

2.2. Zhukovsky method

A inethod proposed by Zhukovsky can he applied to the 2D free surface flow problemns with 1-connected flow
region bounded by only straight solid boundaries. A new function (so-called Zhukovsky function)

(IW Vw= log(= -log log -- +iO (8)

is introduced instead of Kirchhoff's ( v.dz/dw function. Another inlt)rovemnent, following to Zhukovsky
method, is that one has to connect functions w and (o through variable t varying in the upper semi-plane rather
than directly determnine a relationship) between the two functions. Being aware of dependences w(t) and w(t),
one can eliminate variable t and hence get a Kirchhoff's solution to the problemn. However, this operation is
quite aimless because of the following relationships

zew(t), I- (IW eW (It, (9)

Vý Vý I (It

enabling one to solve the problemn.
The meaning of a novel approach is as follows. It was shown in the previous section that w-plane is bounded
by horizontal lines V( const which are images of streamlines in the physical z-plane. On the other hand,
w-plane is bounded by vertical and horizontal lines in the case of straight solid walls in z-plane. Indeed, such
solid boundaries are lines of constant 0, that is imnaginary part of w. while free surfaces, where pressure (speed)
constancy condition is satisfied, are lines of constant real part of w. Therefore w and () planes are hounded by
polygonal segments. As a result, both w and (w domains can be transformed onto the upper half of auxiliary
t-t)lane by using Schwarz-Christoffel transformation.
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Schwarz-Christoffel formula allows one to transform half-plane t into interiority of a polygon with n vertexes
('n-gon) on the w-plane. It is assumned that each vertex is of angle (vi < 27r, i ,I ... , n and

So, 7( - 2).
i~l

It this case the formula is as follows:

/, f(t - ti)ai 1 (It C+- 2 (10)
1, i=l

where points ti corresp5ond to the polygon vertexes. If tk =c then termi (t - tk) ak/--1 in the integrand should
be excluded. Right-hand side of formula (10) includes 2n + 3 unknowns, namely, n real parameters t1 , . .. tn.
n - I of n real parameters (i, i 1,..., n and four real p)arameters in two comlp)lex ones C, and C2. An n-gon is
totally described by 2n coordinates of its vertexes on ,)-plane what generates 2n conditions. Therefore one can
arbitrarily chose three of 2n + 3 unknown parameters, say tj, t2 and t3 . This fact is a version of a well-known
postulate that any conformal mapping is determined by three preassigned boundary points.
Consider the same model problem of cavitating flat plate at zero cavitation number formulated above.
We already have got the relationship between w and t planes, see figures 2 and 6:

w =Bt2. (11)

It is to he emphasized that in a neighborhood of point t 0

(t -- 2(PBt O (t),
(It

where O(t) denotes a quantity which is of the same order of magnitude as t.

On streamline (AC), v v. wherefrom log(vo/v) 0 while angle 0 increases from -ai up to value zero and

therefore (A - log(v/v.) + iO varies fromn -i(i to 0. On streamline (BC) function (A varies from i(7r - av) to
zero. On the interval [OA] of the cavitating plate imaginary part of w is a constant: hncw -(v while its real
part decreases from infinity down to zero. At point C angle 0 varies in a jumnp-like manner fromn -(V up to

7. - c, see figure 7.

0 B 
)

C
0 Voolog

V

A C)

Figure 7: The w plane.

Thus, domain on w-plane corresponding to a region occupied by the fluid on z-plane is a triangle OAB with
zero angle at infinite point 0 and right angles at points A and B. Assume that to 0, tB I and t0 =c,
see figure 6, (a postulate about three preassigned boundary points). Then Schwarz-Christoffel formula (10)
reduces to

t d

wa(t) Cit t/(t- 1)(t +a
2

) H02

where a2 = /A& . At point B, w(l) i(ýr - av), that is why C2 i(ýr - av). The integral above yields

1t l- ri(1-a 2 )t H 2a2 'T )+(a(1 + a2) t 2•a +i7
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At poirit A, w(-a 2 ) -ia, that is why C= -ia and, finally,

w(t) i arcsin (1 -a 2 )tt+ a 2 i + (12)

Using a relationship between the arc sine function and natural logarithmi, expression (12) can i)e re-written as

W(t)=log (1 + a 2 ) t 3+ i ()Sia2 (t - 2) - it + 2a/( -1(t + a,2) \2- •

The system of two nonlinear conditions

w (cc) 0; and ZB =ei-e

allows the two unknowns (PA and (PB to he derived. The former gives

a V ( cot -,

while the latter merit some additional explanation. Equations (9), (11) and (13) can i)e combirined to give

1

1 Vfvdz dw(I
ZB (It,

v IJ dw (It
-at2

wherefrom
1o + sill a sin-42

what coincides with expression (5).
The total force F acting on the cavitating flat plate is calculated in a manner of the previous section

zB2
ipv 2 /ipv• dz dw

F - fCd I (It,
2 J~' 2 C(IW (It

ZA -a
2

where
C - e-2•( and d( 1 (

and give the same result just as above.

Nowadays somne imodifications of Zhukovsky imethod (so-called hodograph imethod) is widely used and, for
instan(ce, was applied to flow domnains bounded by not only polygonal segmnents Nut iy simooth curves as

well [11]. Note that the first adaptation of the classical Zhukovsky (hodograph) method to flow past a body
with a curved topography was considered iy Levi-Civita [15] and Villat [24].

2.3. Mixed boundary value problem method

This method seems to 1)e easy to understand and is very often used. The solution is derived in two steps.
The first one allows us to find comIiplex p)otential w(() or its derivative dw/(dI y ilat)t)ing w-t)lane onto the
preassigned auxiliary (-domain (in a manner of Zhukovsky method). In the case of a cavitating plate, using
w-plane (depicted ini figure 2) and auxiliary ( upper half-plane, see figure 8, we get

dw(W N(, (14)

(I

where N d(enotes a real parameter to 1)e determfineid.
The second step is formulation of a imiixed bounidary value problem for Levi-Civita [15] function

dw v
WLC ilog - = 0 + ilog V- 0 + it. (15)

It is obvious that Levi-Civita function is a pro(duct of the imnaginary unit -i an(d Zhukovsky function (8).
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0 -a 0 @-

C T=0 A 10 B T=0 C

-1 0 b

Figure 8: The < plane.

With the correspondence between physical z and auxiliary ( planes the mixed boundary value problem, see
figure 8, is:

T=0 as ý<-1 and Ž>b

{ -c, as -1<ý<0;
0=

-c-a, as 0<• <b.

where b is a coordinate (to he determined) of image of point B in (-plane.
The solution to the mixed boundary value problem (Riemann-Hilbert problem [17]) is obtained via formulae
proposed by Keldysh and Sedov [10]. The formulae are extremely useful for both nonlinear and linearized
cavitating flow problem and used also in many other fields of fluid mechanics and so merit some additional
explanation.
Below presented are Keldysh-Sedov formulae in the case of the upper semi-plane. It can be readily re-written
for another (-regions like circle, etc.
The Riemann-Hilbert problem is formulated for a function f(z) =,(z) + iv(z) which is holomorphic in upper
serni-plane z x + iy, its real part v,(z) being given on a set of segments [ak , bk], k = 1,... N on the x-axis
and its imaginary part v(z) being given on the other portion of x-axis. Following to [10], three types of solution
to the problem exist:
* solution unbounded at all points ak, bk (cc - cc class):

I(z iRz v, R(() d( + i N dv + PN(X) (16)~) 7ri/ R(z) -- d +-z'
k~lakk=1 bk/

where a, aN +1 1, PN (x) is a polynomial of degree N or N - I depending on behaviour of f(z) at infinity, and

N

R (z)= HJ(z -ad)(Z --bk)
k=1

* solution hounded at all points ak and unbounded at all bk (0 - cc class) as f(cc) 0:

I R.•(z) !N b vU, (() R•b(C i•N I N -(0( b

f(z) W ri R0 (z) 7i(- Rb(z ) Od(+i j z R. d(, (17)

bT R (Z) k=_ 
/ý =1

where N N
R. (z)= 7~ O) Rb (Z)= 7~-

kk~l

* solution hounded at all points ak, bk (0 - 0 class) as f( c) 0:

R(z) N bk u,(C)d(t iN ak11V() d(t

7ri z _ --ZR(z) z C-z R(z)i
k=1 )k
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The latter solution exists if and only if the relationship holds

N o(d ( +i. (19)

YJ /~ ~ R(1z) 0k= •ý k=1 b~k

Co)ming back to solition of the model problemn, one has to use the latter formula (18) along with additional
condition (19) to derive W•LC (O) for the free surfaces detaches smoothly from the edges of the plate A and B and
therefore velocity absolute value is finite there. Thus, using boundary conditions, one arrives at the expression

b

WLC( 7 V-•(+)< b /(1+ t)(b -t) t -

which yields

WLC() i log b --- v •b /I -+ ( (20)
b -- ( + b /I -+

Condition (19) gives
7r 1-b

-a + - + arcsin - 0, (21)
2 1-+-b

or b tan2 (a/2).
Expressions (14) and (20) give analytical solution to the problemi. Conformal mapping is

d exp (i W•LC (0)) d(K

Condition ZB z(b) - 1 ei('-) enables one to find ulnknown paralneter N in the formn

N 81v> (AN - Os4 --

4 + 7r sina• 2

Taking into account that PB w(b) Nb2/2, one obtains the relationship coinciding with (5).
Note that the method of mixed boundary value problem is effectively applicable to free streamline t)robilems
with curved topography of an obstacle. Actually in this case just O(z) is given and function 0(() Re WLC is
unknown on c-axis because it is not a constant and the relationship z(() is yet to be found. A special integral
equation is formulated is a manner p)resented below in section 5.

2.4. Chaplygin method of singular points.

Chaplygin method of singular points based on the idea of determining of a holomorphic function in flow domain
and therefore in auxiliary comiplex plane, the function's zeros and poles being known and Liuville's theorem
app)lied. The theorem guarantees uniqueness of a solution obtained. The auxiliary region, being the image of
the flow region, is chosen to he bounded by straight lines, segmnents and circular arcs so that one could cover
all the auxiliary complex plane by mirror images of the initial domain of auxiliary variable range. Quadrants,
rectangles, disk sectors, etc. are usually used as such ranges depending on sp)ecial features of a t)roblelfl under
consideration.
To get the desired solution to the problem, one has to determine two analytical functions, namely derivatives
of the complex potential with respect of physical z and auxiliary v, variables as functions of v,:

__0iQ) and x Cu) (W Ve
&IIw dw vd i

Conformnal nmapping which transformn flow region into an auxiliary one, then, is

f dz f dz dw
Z u) !-- &II, = -. -( &I, .&II, i dw &II
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Chaplygin practically introduced some basic postulates (though he had never published them) which of consid-
erable assistance while finding a derivative of w. If w(v) transforms w-region into v1-region then:

* a third-order pole of function dw/dv, corresponds to a jet of infinite width;
* a second-order pole of function dw/du corresponds to a jet of semi-infinite width (that is, jet hounded by a
free or rigid surface). Such a semi-infinite jet is called "ocean" in [1];
"* a first order pole of function dw/du corresponds to a jet of a finite width;
"* in points of auxiliary v,-plane corresponding to a vertex of solid wall hounding flow region, function X(u) has
an exponential zero or singularity depending on angle of the vertex;
e function dw/dvi has a zero, more precisely behaves like O(t - to), in point to corresponding to a point on
physical z-plane where a streamline divides. It can he a stagnation point or lealing edge of stagnation zone,
etc.;
* Confformnality condition for derivative of complex potential dw/dv, often does not satisfied at points where free
streamlines spring from the body (jet detachment points). To avoid this, one has to chose a formn of auxiliary
v,-region so that its boundary in points corresponding to jet detachment points makes right angles.
e function dw/dv, has a zero or pole (depending on specific features of the problem) in points where conformality
condition does not satisfied for w - v, transformation.

Now apply the method of singular point to the model problem considered above with Kirchhoff and Zhukovsky
methods, see figure 1. The first quadrant of auxiliary vi-plane is chosen as a region to he transformed into the
flow domain, see figure 9. As is customary, the coordinates of three points 0, B and C on the boundary of

the first quadrant of v,-plane are chosen arbitrarily and location of point A is to be found. Actually the figure
coincides with figure 4 for T-plane used in section 'Kirchhoff method'.

SC

A 0 B

0 a

Figure 9: The auxiliary v,-plane.

Following to the main postulate of Chaplygin method, find both derivatives of w with respect of z and v, as
functions of u, - + i'r/.

Function X(u) (-w/(v.(dz) is a hounded function in the flow region. It becomes zero in just one stagnation
point 0, where , = a. On the plate [AOB] corresponding to real c-axis of v,

argx(u) -O(u) - , { as 0<vi<a
(,v - 7C as aI < vt, < occ

while on free streamlines (AC) and (BC) (imaginary r/-axis of u), X -u) = 1. Due to the Schwarz principle
of symmetry, all the zeros of X(u) becomes zeros in corresponding mirror points with respect to the imaginary
axis and poles in corresponding mirror points with respect to the real axis. That is why, being continued onto
the whole v,-plane, function X(0,) has a zero at point v, a and a pole in , = -a. Then the following ratio

( u H- a X(1
vt, +- aI

is a hounded and holomorphic function everywhere including infinite point and therefore is a constant due to
Liouville theorem. Thus

(IW V 'dw ve~i0 N 1 U--a

X ")= (Z v- -e H-,

where N 1 is a constant defined by condition X(O) = e" which yields N 1 = ei('-r) and finally

V (w ei0 ei("-7) _ -- (
vd, +( e(22)
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Derivative dw/dv, has a third-order pole at infinite point C, where v, = i, and zeros at stagnation point 0
(u = a) and at point A (v = 0) where conforlnality condition does not satisfied. There is no other pole or zero
in the first quadrant of v-plane for dw/du. On continuation of the function into the whole u-plane by mnirror
imapping of the first quadrant with respect to real and imaginary axes of a (where Vy = limw = const) we get

additional third-order pole at point v = -i and zero at point v = -a. Just as above, the ratio

(112 + 1)3• / d11,

is a hounded and holomorphic function everywhere including infinite point and therefore is a constant due to
Liouville theorem. Therefore

dw N 1 2 2) (23)

where N is a real constant.
Two expressions (22) and (23) allows one to solve the problem under consideration which has two unknown pa-
rameters a and N. With the correspondence between z-plane and v-plane, the conformal mapping transforming

latter into former is as follows u it
Z(u,) dZ d(u N i v, (v, + )2 (24)

i d d &II( - 1 (2 (24)

0 0

Note that (23) and (24) can he readily integrated to give

41) N a Q2________ I) (25)
+)4(1 2) \ V2 + 1

Z(u) = N e (a arctan fj u(11 + a ±o(a2 1) + a2 2 + 2))_ (26)
4. r(1 ++)"

Two conditions

x(i) 1, and ZB -(c) =eZ(C C))

generate the following nonlinear system in two unknowns

ei(,-,) i - a N j a (u + a )2 (Ia 1 ei +• a vo 12 + 1)3 r iT-•

which can be rewritten to yield

S2 16 (27)

a cot ; N v. 1 sin _ -(27)
2 2 4 + 7r sin C

It is seen from (25) that

PB w(Dc) = N sin 2 , A W(0) 4 Ncos 2 cot 2,

what coincides with expression (5).
Taking into account that on the plate [AB]

V2 = - 1 dw dw (28)V2 1 ••-1-x42 1 v2 dz dz

the total force F can he derived (6):

2 JCdz(

ZA
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0.5 0 50'

0

-0.5
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Figure 10: Flow pattern for the cavitating flat plate at zero cavitation numb)er and (,v 500.

to give the force coefficient in the formn

0 0 00
o o)

(29)

~ ZB -ZA 1I(W(W(0i &II dw d

0

Using expressions (22) and (23) one easily obtains coefficient CF, see (7).

(v z 39.26'
608.CL( z CD

0.6

0.4

CL

0.2

0
0 15 30 45 60 75 a., (leg

Figure 11: Lift and drag coefficients CL and CD versus angle of attack av.

Flow pattern z(u) x+ iy can he calculated in a parametric form from expression (24) or (26). The coordinates
of the stagnation point ) are as follows

zQ =x z(a) Ieia 4~ + yir(v( - a, -+-2 cot 2 +I sin 2av)
4 1 rsin( a 2•

Flow pattern for the cavitating plate at (a = 50' and zero cavitation number is depicted in figure 10. Stagnation
point ) is shown as well. Figure 11 illustrates behaviour of lift and drag coefficients CL and CD versus angle
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of attack. It is obvious that the lift equals to zero for a = 0 and 7r/2. The corresponding curve attains its
maximumi value CL z 0.514 at cv* z 39.260. Hydrodynamic fineness

CL

CD + Cf

where Cf denotes friction coefficient is shown in figure 12 for Cf = 0.003 and 0.008. The former curve attains
its maximum (11.237) at a 2.50 while the latter one (6.798) at a..ax2 z 4.070.

Q I I
10
10 Cf -- 0.003

Q CL8 _____
CD + C

6

4

0 10 15
01, (leg

Figure 12: Hydrodynamic fineness versus angle of attack av for friction coefficient C = 0.003 and 0.008.

It is to be underlined that Chaplygin method of singular point appears to he the most effective while solving 2D
nonlinear problems of theory of jets in an ideal fluid. It can he readily applied to considerably more complicated
problems than that discussed above and gives quite satisfactory results.

3. A variety of cavity closure schemes

Consider a flat plate with attached cavity, the pressure within the cavity being p = po- In the flow region the
following dynamic condition is satisfied p > p0, or using Bernoulli integral

v = v0 on the cavity boundary; v < v0 in the amnbient fluid.

Then the cavitation number (T can he rewritten as
P.o -- Po v 2

(T =- - 1> 0,
pv2/2 v2

where vo is an absolute velocity value on the cavity boundary. As a result, the cavity length becolmes finite
because of the cavity pressure is less than ambient, including that at infinity. The smaller the cavitation numlber,
the larger the cavity extent and in a limiting case, as (T - 0, the cavitation flow coincides with a streamline one
considered above.
The Brillouin paradox [2] is well-known: cavity of finite length with closed continuous boundary is mathemati-
cally impossible. Indeed, if the upper and lower parts of the cavity make a closed contour then a stagnation point
should appear. That is impossible due to the requirement of a constant absolute velocity value on the cavity
boundary. That is why a set of cavity closure models has been developed, for the definitions and properties of
which reference may be made to [1, 5, 7, 23]. Each scheme has its own advantages and disadvantages from the
mathematical and physical viewpoint and should he chosen depending on specific features of the problem at
hand.
The section contains a set of analytical solutions to the nonlinear problem of a supercavitating flow past
a flat plate of chord 1, with angle of attack a and cavitation number (T > 0. the cavity closure scheme being
varied. The schemnes considered are as follows: Tulin-Terentev (single spiral vortex termination), Efros-Kreisel-
Gilbarg (re-entrant jet termination), Riabouchinsky (symmetrical plate termination), Tulin (double spiral vortex
termination), Zhukovsky-Roshko (horizontal plates termination). All the analytical solution were derived via
Chaplygin method of singular points. Numerical results were obtained in Mathematica for Windows computer
mathematical environment.
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3.1. Tulin-Terentev scheme: single spiral vortex termination

Consider a cavitating plate, see figure 13. A cavity closure schemie involving single spiral vortex is accepted as a
model of cavity termination. Tulin [23] was the first to propose the schleme which was later thoroughly analysed
by Terentev [7]. In the point of cavity 'collapse' the model requires

A

where A > 0.

Y y 

B

B D (v Co

D
A C A 0 B

x 0 a

Figure 13: Flow pattern (z-plane) and auxiliary -t-plane for the cavitating flat plate, Tulin-Terentev scheme.

On the dividing ('zero') streamline, where V( 0, the following relationship holds in a neighborhood of point C

( (dw'\
lirai arg d- ±ZCc,

what corresponds to two spiral streamlines with centers at points C+ and C-. Sketch of the flow in the region
of the cavity termination is shown in figure 14.

•0=

Figure 14: Schematics of the flow in the vicinity of the cavity termination, from [7].

Following to the main postulates of Chaplygin method, with the correspondence between physical z-plane and
first quadrant of auxiliary v,-plane, see figure 13, and applying Schwarz principle of symmetry to cover all the
v,-plane, one obtains derivatives of complex potential w in the form

dw =, - a ( 2bu,dz -Vo i( ______÷ exp I•
1Z ~ u + a ( 11 ' 2 + 1)(30)

dw N u (1,2 + 1)(112 - a 2)
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wherefronm

z(u) = ei( N ) / u(2 +)(+a)2 2bu . (31)
v (2- )2(2 2 +

It is easy to see that stagnation point 0 generates zeros at point u a for both the derivatives, point at
infinity D corresponding to fi = finfty =c -id generates second-order pole of dw/df, and at point v, i (image
of points C, C+ and C-), dw/d, - O(u, - i) and w = O(v, - i)-1

Three conditions
dw 0(•1, ) V ; ZB Z(OC) =e " (] If 0(32)

dZ J di 0 (32)

give a nonlinear system of five equations in five unknown parameters of the problemi a, b, c, d and N to he

derived. The latter condition imiplies an existence of a contour comipletely surrounding the plate and the cavity
on the first Riemann sheet and actually is a cavity closure condition. Terentev was the first to propose such
a relationship [20] which can be used to tell so-called closed cavity closure schemes from 'open' ones. All the
calculations are effectively accomplished with use of Mathematica for Windows software.

0 .8 i 1 1 1 1 1

0.6

B0.4 - 0 C+

a• 30' (T 1

0.2 C C-

CL=1.158 
C

0)
CD =0.668 A

-0 .2 I I I I I I I

-1 -0.75 -0.5 -0.25 0 0.25 0.5 0.75 1

Figure 15: Flow pattern for the cavitating flat plate at (T = I and a = 30'.

Force coefficient CF is derived in a simnilar ianner of formula (29):

CF +(TZ ZA -f / Ii (33)
1 1 fit d )

Figure 15 illustrates the flow patter for a = 30' and (T - 1. It is to he eilnphasized that single spirals at point C
shrink very rapidly and so the region of double-sheeted flow is quite small. The flow region in the vicinity of
point C- is shown in figure 16. Note that vertical distance 8 between C+ and C- is directly connected with
drag coefficient CD:

1

3.2. Efros-Kreisel-Gilbarg model: re-entrant jet termination

The flow pattern is depicted in figure 17. The model proposed almost simultaneously by Efros, Kreisel and
Gilbarg [1] involves a re-entrant jet of unknown width 6 and direction p, at infinity point C which lies on
the second Riemann sheet. Gurevich [7] was the first to successfully apply the scheme to the problem of a
supercavitating plate which is perpendicular to an inflow. An additional stagnation point E is appeared in the
vicinity of the cavity trailing edge.
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Figure 16: Flow region in the vicinity of lower single spiral vortex.
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Figure 17: Flow pattern (z-plane) and auxiliary v,-plane for the cavitating flat plate, Efros-Gilbarg schemne.

Adopting first quadrant of auxiliary u-plane as an image of the flow region, with the correspondence between
physical z and auxiliary v, planes (see figure 17) solution to the problem is as follows:

(IW, + a (u + io) (u + u)

dw N 'v2 - a 2)(11, - 11,2)(11,2 7- ) (34)

di (u2 + 1)(112 - 12)2(12 22

where v- b + ic and v, = d + if. These two expressions can he combined to give

u

Nuvei(ra) + a,) 2  
(1, + ±u,0 )

2 
2 (±1,u + ) (,Z(uI, • ,(?÷) - × e ~)(, -X()2&u (35)

(O 2 + 1) -(112 ~~)2(2
0

The same conditions (32) yield a nonlinear system of five equations in six unknowns a, b, c, d, f and N. It is
easy to see that the solution is not unique for the number of unknowns is greater than the number of conditions.
Nevertheless, one can use an additional condition connected with the direction of the re-entrant jet at the point
of infinity C, see figure 18. Both the asymptotic analysis and numerical results for the cavitating flat plate have
shown angle p, not to significantly affect the hydrodynamic coefficients and even most of the flow pattern. That
is why it seems reasonable to consider the parameter as a given one. Thus, an additional condition is as follows

dwd z ( i ) v= V e -•t .

Using residue theory, one arrives at the following relationships (which are correct for an arbitrary cavitating
hydrofoil):

2q v0 ) 2q (r v (36)CD - 1- -1voCsp ;J CL =-- - -- Sil /'(6
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where q denotes the flow rate in the re-entrant jet C and( 1 is circulation along a large contour conmpletely
surrounding the cavitating foil and the cavity and enclosing most of the flow. Note that

fd(
res~] (T¢de

and, moreover,

q 7rN l+ a2) ((l+ b2 -c
2 )2 +4b

2c 2)

2 ((1 + d2 
-f

2) 2 + 4d2f2)
2

0.8 i 1 1 1

0.6 _

B
0.4 - 0 3 0 °,T

0.2 
F' = 1

CL 1.151 q 0.092
z

0/
CD 0.664 A

-0.2 I I I 1

-1 -0.5 0 0.5 1 1.5

Figure 18: Flow pattern for the cavitating flat plate at (T 1. a 30' and p, 1800.

Another form of the force coefficient is

CF 2 ( -i± ei'Jm (res) = ir) . (37)

Flow pattern for the cavitating flat plate at (T I and a 30' is shown in figure 18 along with hydrodynamic
coefficients and position of stagnation points ) and E. The direction of re-entrant jet is chosen to he p, 1800.

3.3. Riabouchinsky model: symmetrical plate termination

The model introduced by D. Riabouchinsky [19] assumes the flow region to he symmetric and so the cavity
terminates on the symmetrical plate. Another version of the scheme was proposed [21] with central symmetry,
see figure 19, which is more convenient frlom the viewpoint of mathematical analysis. Adopting this scheme,
transform flow region into the rectangular 7r/2 x 7r1TI/2, where r is purely imaginary, on the auxiliary v,-plane,
see figure 19.

.TI B' 0' E A'

2

DD

D A B' A 0 B

0 a 7/2

Figure 19: Flow pattern (z-plane) and auxiliary v,-plane for the cavitating flat plate, Riabouchinsky schemne.
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Conjugate velocity dw/dz has constant absolute value v0 of both vertical sides of the rectangular, while on
the horizontal sides its argmnent is a step function with a jutnip-like b)ehaviour in stagnation points ) and 0'
(argument varies by 7r). That is why dw/dz has zeros at points v, = a and v, = 7 - a + 7rT/2. Using Schwarz
principle of symnmnetry, one arrives at the conclusion that dw/dz is a doubly periodic elliptic function with
periods 7f and 7TT. Basing on the Liouville theorem and accepting notation of Whittaker & Watson [25] one can
write down such a functions as a ratio of elliptic theta-function 0j, i = 1,... 4 which no'me 0 < q < I is real.
Function d(w/d, is real on horizontal sides of the rectangular and must he pJurely imaginary on vertical sides.
That is why this derivative is also a doubly periodic elliptic function with periods 7T and 7FF. The point D
at infinity b)ecomes the rectangular center U, 7rT/4 + 7rT/4 where dw/dv, has a second order pole. Stagnation
points generates simiple zeros and so do points where conformality condition does not satisfied, that is all the
rectangle vertexes.

0 .8 i 1 1 1 1

0.6 -a 30', (T 1

B A'

0.2
CL 1.116 O

-0.2 1 1 1 1

-1 -0.5 0 0.5 1 1.5

Figure 20: Flow pattern for the cavitating flat plate at - 1= I -a 30'.

The solution to the problemi is as follows

(1W = ~vo ei 0 1 O(a a)'03~( 01,- a)

dZ 0i~ -1-( a)'03(11 a)
(38)

dw o N 01 (2v,) x V1(a a) I (v + a)'03 (1 a)'0 3 (o + a)

wherefrom

U

N 0 i•~, 11(2v,),j)'l2(jj1, + a I,j)'2(jj,1 -- ()

Z (ul) vo e . 112,, 3 da (1. (39)
0

An advantage of the model proposed is that it always involves less number of unknown paramieters then the other
schemes. Indeed, one has to determine just three unknowns a, r and N in the problem under consideration
instead of 5 - 6 in other cases. Two former out of three conditions (32) give the nonlinear system of three
equations in three unknowns, where vo, 7r/4 + 7rT/4, the latter condition (32) being satisfied due to the
central symmetry of the flow region.
Force coefficient and flow pattern are calculated using expressions (33) and (39) correspondingly. Figure 20
illustrates some numerical results obtained in Mathematica package for the same set of the flow paramfeters
which was considered in the previous sections.

3.4. Tulin model: double spiral vortex termination

The scheme was proposed by M. Tulin [23] and involves two do1uble spiral-like streamlines at the trailing edge
of the cavity. Such a double spiral vortex flow is known to he a unique opportunity to conjugate smoothly two
streamlines with different absolute velocity values [1], see figure 21. The scheme is appeared to he especially
efficient for confined streamline problemfs with one/two free surfaces which bounded the flow region [14, 22].



10-19

Figure 21: Flow pattern in the vicinity of a double spiral streamline, from [1].

In the case of the cavitating flat p~late, first quadrant of auxiliary v,-jplane is chosen as imiage of the region
occupied b~y the fluid in z-jplane, see figure 22. The wake b~ehind the cavity b~egins at p~oints C and E' and thins

continuously in1 the downstream direction.

Using Chaplygin method of singular p~oints one obtains that function (1w/dv, is real on c-axis and p~urely
imaginary on fl-axis. It has zeros at stagnation p~oint 0 (v, a) and at p)oint A where conformnality condition
does not satisfied and three-order p~ole at p~oint at infinity D (ui i).

'C D

DD

AD A 0 B

x0 a

Figure 22: Flow pattern (z-plane) and auxiliary v,-plane for the cavitating flat plate, Tulin scheme.

Another derivative dw/dz has a zero at stagnation p~oint 0) and b~ehaves in a sp~ecial manner at p)oints C and E'.
Consider a function

~dZ
which is a step) function on c-axis. Tracing smnall semi-circles described ab~out p~oints C (u = ic and E (u = id) in
the counter-clockwise direction, one arrives at the conclusion that the argument of the function has an increment

(1 /7r)(log(vo/v.) and (1/7r)(log (vý/vo) corresp~ondingly. That is why

(IW =V j(,-,r), - a v,-ic v, +i

d Z v ,O e+I aN , + i v d( 0

(hi u(u2 _-ai 2

where
1 Vý

r, - log

and

z d) Z~ h w N /, i(v, + a) 2  v, +±ic v,-id'\~(i
dw (111, VO(1112 + I)' u - ic v,+id}
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The problem involves four unknown paramieters a, c, d and N. On the other hand, just two 'direct' conditions
can he imiposed: dw

(I- (0, ) v. and ZB Z (CC) =ei(ga- . (41)

dZ

Cavity closure condition applied in the previous sections

f dZ

does not satisfied.
Thus this scheme is appeared to he the most indeterminate cavity closure model. Nevertheless, two additional
conditions should he formulated:

(PC E and 1 =0 (42)

to close the problemi. The former imiplies the velocity potential to he the same at the end of the cavity at
upper and lower boundaries. The latter specifies the angle 0 (direction of the velocity vector) along the wake
boundaries be minimal at point D. Note that both conditions are arbitrarily chosen and can he substituted by
a pair of others, for instance yC = YE and d2w/drj2 = 0 as rl = 1.
Numerical results obtained with use of conditions (41) and (42) are shown in figure 23.

0.8 1

0.6

B
0.4 0

a = 30', (T 1

0.2
-CL 1.116

CD 0.644 A

-0.2 1 1 1 1 1

-1 -0.5 0 0.5 1 1.5

Figure 23: Flow pattern for the cavitating flat plate at (- 1 . a 30'.

3.5. Zhukovsky-Eppler-Roshko model: horizontal plates termination

The model is often called ýopen' one and assumes that free streamlines conjugate smoothly with two solid semi-
infinite plates which are parallel to the inflow. The absolute velocity value monotonically decreases from v0
down to v. along this plate. This cavity closure model is very effective for streamline problemis either under
gravity or with one/two solid boundaries [7]. Zhukovsky [26] was the first to introduce the model.
Following to Chaplygin method, transform flow region into the rectangular 7r/2 x 7r1T1/2 , where r is purely
imaginary, on the auxiliary v,-plane, see figure 24. Determining zeros and poles, one arrives at the following
solution to the problemi

w ('u, -- a)

dZ v( + a) (43)

(W N 01 (2,), (v, --( a)01 (v, + a)- = o -N 6

wherefronb

NV 0i(1• (2u,) 12(11, + a')
Z(,) v 0] (•i - b)=0] (- + b) d" (44)

0ob ) (j'+b
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Figure 24: Flow pattern (z-plane) and auxiliary v1-plane for the cavitating flat plate, Zlhkovsky-Roshko-Eppler
scheme.
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Figure 25: Flow pattern for the cavitating flat plate at (- 1= I -V 30'.

First two out of three conditions (32) where v,. = b + 7rT/2, along with two additional conditions

dz(2 2/(d \.
d_-___ 5 voo and \dZ , ,1o

allow four unknowns a, b, T1 and N to he derived. The former of the additional conditions implies that the
semi-infinite plates are horizontal and the latter specify the velocity absolute value he a monotone decreasing
function having its minimum at point D (u = ui).

The corresponding flow pattern and hydrodynamic coefficients are shown in figure 25. Note that this open cavity
closure scheme give significantly smaller cavity length than so called closed models, such as Riabouchinsky,
Tulin-Terentev, Efros-Kreisel-Gilbarg. As a result, the hydrodynamic coefficients become somewhat larger.

4. Free and solid boundaries

All the previous section has demnonstrated an effectiveness of Chaplygin method of singular points applied to

nonlinear cavitating problems of theory of jets in an ideal fluid. This section contains another documentation

of the fact dealing with two somewhat more complicated problemls: first one being that of the flow past a
cavitating flat plate in the channel and second one - cavitating plate in the uniform jet of finite width. It was
shown by Terentev [21] that Zhukovsky-Roshko and Tulin (double spiral vortex) schemes are to he used for the
problems. We shall not dwell on the solution procedure and just describe the final results and some limiting
cases.
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4.1. Cavitating plate in a channel

The flow pattern z = x + iy and the auxiliary v1-plane are depicted in figure 26. Given are the following
parameters: angle of attack a., plate length 1, channel width H, cavitation number (T and a distance between
the lower wall of the channel and point A (trailing edge of the plate). It is also assumed that velocity vl at
points D, and D$3 is the same (though it is an unknown value).
D2' h3 D3 E

C 3 vi D3 E D, D2 D3 C

2 7T 7TT 7

H B 0 2 2 2

a A x

EDh A 0 BD2 ______D1________________

0 a 7r/2

Figure 26: Flow pattern (z-plane) and auxiliary v-plane for the cavitating flat plate in the channel.

vc0

v0  ________ __ __

a) b)

C)

Figure 27: Some special cases of the problem for the cavitating plate in the channel.

The analytical solution to the problem is readily given by Chaplygin method [22]:

dw ei(,) 01 (u- a)

dz 0V1 (u, + a)

(dW 01 (2uo),01 (u, - a),01 (v, + a) (45)
3

H '04(11, - d) '04Q(, +- b•)
i=1

wherefrom
N 01 / l(2(,) 2(, -+- a)

Z(u) _ 1&u. (46)VO ,]3

0 H '04(~11 - dj) 04(~11 +1 bi)
i=1

Unknown parameters of the problem a, bi, b2, b3h N, q, velocity Vl, widths hl and h3 are derived from a quite
complicated system of transcendental equations obtained on the base of the following conditions

dw dw (W
0Z(1,o) Vo ('i 1 ) Vl (- (12) V, ; Hvý= vj(hi + h3 ); ZB Z(OC)=le

dzdz dz

I dw I fdw dw 77T (47)
_ (iL = iv.H; -2 () =d ivlhl" 2 + T vo; hn z= i(h1  - h)

2 (Ilu 2 f (Ilu dz \2 2/ JfZil-
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where u = 112 = d 2 + 7r-/ 2
, ui di + 7rT/2, i = 1, 3.

After some algebra the number of unknowns (and equations) can he reduced from nine down to six and even
to four, but the system remains complicated.
The general problem has lots of interesting special cases as h, or h3 tends to infinity (one solid wall), di = 0
and d3  7r/2 (Kirchhoff scheme in the channel, when point C coincides with D 3 and E with D1 ), etc., see
figure 27.

4.1. Cavitating plate in a jet of finite width

The flow region and the corresponding auxiliary u-plane are shown in figure 28. Tulin cavity closure model with
double spiral vortex is adopted for it seems to he the most efficient from the mathematical viewpoint. The jet
width is assumed to he H and submergence of the plate is h. Actually submergence is a distance between a
dividing streamline and the upper jet boundary far upstream. The velocity on the jet boundary is v•.

Svv'T B

ic C
i e E '

h B 0 C if F

id D
G A 0 B

Figure 28: Flow pattern (z-plane) and auxiliary u-plane for the cavitating flat plate in the jet of finite width.

If one choses a first quadrant of the auxiliary u-plane as an image of the flow region, then solution to the problem
is found through Chaplygin method in the form:

dw i(_r) u -- a (v - ic u + id h

dz v0+a ,+ic u -id) ' (48)
d w 1 1• ' ( 1 1 2 _ a 2 )

-N
d+ (u2 H 1)(u 2 + e 2 )(1 2 + f 2 )

where, as beforehand
i Vco

r- - log-

and

I dz dz dw
z (u) (10, do-&u

(1 u , dw (u0
0 0

Conditions
dw (U, ) V ; ZB Z(OW) =e arg d (i ) (i- )

1/dI 1 dw
w(id) w(ic); I , = H - ( =W

2 d(1, 2iv (1d, ihvcz
U_• ie

allow the unknowns a, c, d, e, f and N/V. to he derived. Again, the third and fourth conditions (which specify
the velocity vector he of the same direction at points E and G at infinity downstream and complex potential be
of the same value at the ends of the cavity C and D correspondingly) are quite artificial and can he substituted
by other reasonable relationships.
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Figure 29: Flow pattern for the cavitating flat plate in the jet.

Note that solution (48) produces a solution by Larock and Street [14] for the cavitating plate beneath the free
surface as its special case as H - c and f - 1+. Solution for the cavitating plate in unbounded inflow (40)
is also a special case if H, h - c and d, e - 1+ as well.
Figure 29 illustrates numerical results (flow pattern in the vicinity of the plate and hydrodynamic coefficients)
obtained with use of Mathematica for the cavitating plate with a following set of given parameters: H = 2,
h = 0.75, a = 300, (T = 0.3.

5. Separated free streamline flow around a body with a curved boundary

5.1. Levi-Civita approach

Levi-Civita [15] was the first to propose an approach to solution of the plane free surface flow problems for
obstacles of a curved topography. Such problems are significantly more complicated than those with flow
regions bounded by polygonal segments. For the latter the imaginary part O(v,) of the Zhukovsky function w(u)
is given on the portion of the auxiliary v1-do(iain boundary corresponding to the straight solid walls and its real
part (velocity absolute value) is given on the other portion of the boundary. In the case of a curved obstacle
all information one possesses is just the function O(z) on the wetted portion on the body (which is sometimes
also unknown) and velocity absolute value on free surfaces. The main difficulty of the problem is that it is
impossible to set O(u) without conformal mapping z(i,), if O(z) is not a step function.
Following to Levi-Civita approach, flow region z is transformed into the semi-circle in auxiliary vi-plane (one
can also chose another domain as well) and Levi-Civita function (15) is written down in the form

WLC = Wo + Q

where wo0 denotes Levi-Civita function for a polygonal body. Additional term is

where Ak are real coefficients to he found frlom the imposed conditions including Brillouin one (smooth detach-
ment condition).
Brodetsky [3] calculated a flow around a circular and elliptic cylinder for (T = 0, three coefficients Ak being
taken into account. In the case of circular cylinder the relationship holds

dO

(18
where s denotes an arc coordinate of the body boundary and r is its curvature. Collocation method can be
used to derive the coefficients Ak. Significantly more detailed numerical analysis of the problem was done in [7]
by Terentev and Dmitrieva for an arbitrary cavitation number (T, more than 30 terms being taken into account.
Two points were determined satisfying the Brillouin condition. The points correspond to two maxima on curves
C, versus detachment angle - for a given (T, see figure 30.
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0 x

C

Figurre 31: Flow pattern for the cavitating arc contoutr at zero cavitation numblier.

Then, again,

(I=W N (49)
d(1

where N is a real p~aramfeter to h~e determined and the mixed ihoundary valute p~roblemf for Levi-Civita func-
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tion (15) arising in (-plane:
T-0 as •<-1 and Ž>b

0 0 - a•) as -1 < < 0;

7 - cvý), as 0< <b.

where b is a coordinate (to he determined) of image of point B in (-plane and cv(() is the body angle at
point ( =, relationship a(s) being given, where s is an arc coordinate of the contour, s = 0 at point A and
s = S at point B.
The Keldysh-Sedov formula gives the solution to this problem in the 0 - 0 class

b b
WL( V'( )(- )X(t) (It + (ItJ I (/I(l +t)(b 0 V/(1 +t)(b-t) t -(

which exists if and only if
b

I f a• ( t ) d It + 7 -r c i I - b 0
_7r V1(1 + t,) (b - t) +2 1 +rsi b .

1-i-

It is seen that

Ca arctan dy/ds)

This equation can he used in conjunction with the equality

dzd,=-exp(ia(V)
(18

to give
z

,s(• exp (- i v) dz -- / xp -i(,(t)} exp {iWLC(t)}tt

0 -1

Substituting the solution for WLC into this equation finally gives

s(G) N J ( )t ()dt (50)
-1

where

Gtb)=2 lb(1+i-t) (b - t) + t(b - 1) + 2b X l(1-+ t,) (b b )VP t dt1
I +1b 7r + (l-t)(b--t) t-

This integral equation along with relation (*) and an obvious condition

s (b) = S

allows ulnknown paralmeters b, N and function a (V) to he determined.

5.3. Arbitrary 2D supercavitating hydrofoil: analytical solution

Both the Levi-Civita and integral equation methods are known to connect with significant difficulties while
considering a flow past an obstacle with a bioundary of large curvature r,. At the same time, hydrofoils have
such a region in the vicinity of the leading edge. One can find some theoretical analysis of the nonlinear problelns
of an arl)itrary supercavitating hydrofoil and numerical results as well in [9. 4].
That is why an approach proposed by Maklakov [16] for arbitrary cavitating hydrofoil, see figure 32, is of interest
as an improvement of Levi-Civita method.
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D OB Y (

Figure 32: Flow region around a cavitating hydrofoil (Tulin Terentev cavity closure scheme).

0

B C A
-1 0 1 i

Figure 33: Auxiliary (-plane for cavitating hydrofoil.

Consider a cavitating hydrofoil which boundary is given by relation av F(s), where s - arc coordinate (S 0
at point A) and (a is the tangential angle to the foil. Tulin-Terentev cavity closure scheme with a single spiral
vortex model of cavity termination is adopted (subsection 3.1). Following to Maklakov, transform flow region z
into the upper semi-circle ýtý < 1, lin > 0 on auxiliary plane t = + ir4, see figure 33. Stagnation point )
corresponds to t0  exp(i30 ), point C - to the origin of the coordinate system in t-plane and point at infinity D
has the image at t. = r. exp(i6.).
Chaplygin method of singular points gives the derivative

dw kvo t(t 2 
- 1)(t 2 - 2tcos & + 1)

(It vof(t) (t _ t) 2 (t _ &) 2 (t _ l/t 1/t) (51)

where k is a real parameter to he determined.
Levi-Civita function is

t2- 1
WLC(t) =WO(t) +-1- +l-1 Q(t). (52)

t
where M denotes a real constant, wo(t) is Levi-Civita function for a flat plate at zero cavitation number

t -- exp)(i 8o)
wo(t) =a 0 - 7. + i log 1 - t exp(i 60)

and Q(t) is analytic and continuous function in upper semi-circle. That is why conformal mapping can he
written as

t t

Z (t Zd (I-t ,exp i W0(t) + i -t2 + iQ(t) f (t)d(t .
dI (It J tf

1 1

Levi-Civita method requires the expansion

Q (t) ZAktk

k= 1
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where Ak are real coefficients to he found. Maklakov [16] proposed another representation of Q. If

Q(e"6 ) A A(6) + i/,(8)

then Schwarz formula for a circle gives a relation between Q and its real part A given on the semni-circle boundary

Q (t) t2 A() 1

7i 2t cos ( + t2

0

Imaginary part of Q(t) is

/j,(-) CA + (A(E) - A ()) (cot E - cot 2 d.

0

Y
0.25 a)

A
0

0.25 0.5 0.75 x

AO°

100

0

-100 s

0 1 2

Figure 34: Zhukovsky hydrofoil (a) and relation (V = F(s).

Using expression (s/d(1T dz/dtý and conformal mapping z(t) write down the relation between arc coordinate s
and polar angle (:

15

s(6) = k/g(-y) ex p(-CA - 2M sin) (1-)8((T

0

where

9(-y) -4sin- (1- cos(- + 6o)) x X

(1 + r,2 - 2r. cos(-) - (T)) (1 +- ,r - 2r. cos(-) - (oo))"

It is easy to see that A -(v - ct0 and therefore, finally, one arrives at the following integral equation

A(6) = -(AO + F (I9(-y) exp(-CA - 2M sin-) (53)

Five unknown paralmeters k, Al, ,0ý., r 6. are derived from the conditions
f dd(w

d(It = 0, (dz (tý) = ,8(-1)
(t dz
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Figure 35: Drag coefficient CD versus wetted length S.
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0
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Figure 36: Lift coefficient CL versus wetted length S.

where S denotes the whole (given) wetted length of the hydrofoil. The latter condition can be substituted by
Brillouin condition at point B which specify the curvature of the cavity and hydrofoil be the same at detachment
point B (t = -1). It was demonstrated [1] that this condition is equivalent to Q'(-1) = 0 which yields [16]

7r tan 6 + A(H ) tan = 27M.
2 ,1 2

0

Naturally, in this case the wetted length S is unknown because z-coordinates of point B are unknown as well.

Some numerical results for a supercavitating Zhukovsky hydrofoil are shown in figures 34-36. Zhukovsky
hydrofoil of unit chord length is chosen to have maximum thickness 11.82%, perimeter P = 2.053 and curvature
radius at the leading edge p = 0.016, see figure 34, where the foil geomnetry and relation (A = F(s) for the
tangential angle to the foil versus arc coordinate s are shown. Figures 35 and 36 demonstrate drag and lift
coefficient versus wetted length S (Brilllouin condition is not imJposed) in the case of angle of attack (A = 50 for
a set of cavitation number (T = 0, 0.1, 0.15, 0.3 and 0.5 (curves ý1' corresponds to (T = 0). It was found that
drag (lift) coefficient attains its maximum (mniinimum) value at points where Brilllouin condition was satisfied.
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Conclusion

A brief review of the main theoretical approaches to problems of the theory of jets in an ideal fluid was conveyed,
including hodograph (Kirchhoff and Zlmkovsky) methods, Chaplygin method of singular points, mixed boundary
value problem method, some modifications of Levi-Civita approach and method of integral equations. Every
analytical solution is illustrated by numerical results, including flow patterns.
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